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This theoretical study examines confined viscous planar jet/wake flows with
continuous velocity profiles. These flows are characterized by the shear, confinement,
Reynolds number and shear-layer thickness. The primary aim of this paper is to
determine the effect of confinement on viscous jets and wakes and to compare
these results with corresponding inviscid results. The secondary aim is to consider
the effect of viscosity and shear-layer thickness. A spatio-temporal analysis is
performed in order to determine absolute/convective instability criteria. This analysis
is carried out numerically by solving the Orr–Sommerfeld equation using a Chebyshev
collocation method. Results are produced over a large range of parameter space,
including both co-flow and counter-flow domains and confinements corresponding to
0.1 <h2/h1 < 10, where the subscripts 1 and 2 refer to the inner and outer streams,
respectively. The Reynolds number, which is defined using the channel width, takes
values between 10 and 1000. Different velocity profiles are used so that the shear
layers occupy between 1/2 and 1/24 of the channel width. Results indicate that
confinement has a destabilizing effect on both inviscid and viscous flows. Viscosity
is found always to be stabilizing, although its effect can safely be neglected above
Re = 1000. Thick shear layers are found to have a stabilizing effect on the flow, but
infinitely thin shear layers are not the most unstable; having shear layers of a small,
but finite, thickness gives rise to the strongest instability.

1. Introduction
This paper describes the effect of confinement on the local stability of planar

viscous jets and wakes. The model (figure 1) consists of a uniform viscous fluid
confined between two flat plates. The fluid moves parallel to the plates and has a
smooth velocity profile with two inflexion points. The profile is symmetric about
the centreline and had no streamwise variation. If the inner part of the fluid moves
faster than the outer parts, it models a jet flow. If the outer parts of the fluid move
faster than the inner part, it models a wake flow. In order to avoid having to include
boundary layers, the walls are given the same velocity as the outer fluid.

This paper focuses on the transition from local convective to local absolute
instability. This is a necessary (but not sufficient) condition for the existence of
self-sustained global instabilities, which are observed in numerical simulations or
experiments. The connection between local and global instability was studied by
Chomaz, Huerre & Redekopp (1988) for the Ginzburg–Landau equation and by
Monkewitz (1988) for a planar model of the wake flow behind a cylinder. Monkewitz
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Figure 1. Model base flow.

(1988) showed that the sequence of transitions behind a cylinder wake as the
Reynolds number is increased confirms the scenario described by Chomaz et al.
(1988): transition from stability to convective instability, transition from convective
to local absolute instability and finally transition to a self-sustained global mode, via a
Hopf bifurcation, when a sufficiently large portion of the flow has become absolutely
unstable. This complemented the experimental work of Mathis, Provansal & Boyer
(1984), who had shown that the onset of the global oscillations in a planar cylinder
wake is via a Hopf bifurcation to a global mode, and the theoretical work of
Koch (1985), who had shown that planar wakes in a uniform fluid contain an
absolutely unstable region. For these shear flows, Delbende & Chomaz (1998) showed
that the velocities of the front and back of an impulse response wavepacket are
determined by the linear instability properties, while the saturated amplitude in the
centre of the wavepacket is determined by the nonlinear properties. Put together, these
studies justify the use of the transition from local convective to local absolute linear
instability as a proxy for the transition from a globally stable to a globally unstable
flow. Furthermore, the global stability properties can be predicted remarkably well
from the local stability properties. This works for linear global modes (Huerre &
Monkewitz 1990) and for nonlinear global modes (Pier 2002).

Unconfined jets and wakes have been extensively studied. For instance, in their
theoretical spatio-temporal stability analysis of planar jets and wakes with non-
uniform density ratios, Yu & Monkewitz (1990) showed that unconfined planar jets
and wakes can be absolutely unstable even in co-flow. They showed that this is due
to the interaction between the two shear layers, and not due to the shear layers
themselves, which can only be independently absolutely unstable in counter-flow.
In an experimental study of planar jets, Yu & Monkewitz (1993) showed that hot
jets, which contain absolutely unstable regions, exhibit self-excited global oscillations
while cold jets, which do not contain absolutely unstable regions, do not exhibit
self-excited global oscillations. As for the studies of planar wakes described in the
previous paragraph, the onset of these global oscillations was identified as a Hopf
bifurcation. The same has been found in round low density jets, both theoretically
(Monkewitz & Sohn 1988) and experimentally (Sreenivasan, Raghu & Kyle 1989).

Confined jets and wakes have received less attention. Theoretical studies,
summarized shortly, have dealt with both jets and wakes. In these studies, confinement
is quantified by the ratio of the outer flow thickness, h2, to the inner flow half-
thickness, h1, which is given the symbol h ≡ h2/h1. These theoretical studies predict
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that confined wakes have more interesting instability behaviour than confined jets.
It is not surprising, therefore, that all experimental and numerical studies relevant
to this paper have focused on confined wakes rather than confined jets. In these
studies, which are on confined circular, square, rectangular and triangular cylinders,
confinement is quantified by the ratio of the cylinder diameter to the duct width,
which is called the blockage ratio and given the symbol β . This is related to h by
h = 1/β − 1.

At high Reynolds number, confinement destabilizes wake flows. This is seen
particularly clearly in the experimental study of Richter & Naudascher (1976), who
examined the fluctuating forces on a confined circular cylinder at 104 <Re < 106.
The fluctuating cross-stream force, which arises from sinuous vortex shedding,
increased markedly as the flow was confined, becoming eight times greater than
the unconfined case when the cylinder’s diameter was half the distance between the
plates (h = 1, β =0.5). The same effect was observed by Kim, Yang & Senda (2004)
in their numerical study of a confined square cylinder at Re =3000 and one value
of confinement, h = 4. The fluctuating cross-stream force was 1.79 times greater in
their confined case than in the corresponding unconfined case. (The advantage of
a square cylinder is that, unlike a round cylinder, any effects due to the shifting
of the separation points can be ruled out.) A similar effect is found in the high-
Reynolds-number flow around a cylinder that is placed next to a wall. Bearman &
Zdravkovich (1978) found, at Re= 45 000, that the vortex shedding frequency became
better-defined as their circular cylinder approached the wall. Similarly, Hwang &
Yao (1997) found, at Re =1000 and h = 5.5, 3.5, 1.5, that the fluctuating cross-stream
force increased as their square cylinder approached the wall. Both studies suggest that
this semi-confined configuration, like the fully confined configuration, has a stronger
global mode than the unconfined case.

For inviscid planar jets and wakes, the theoretical analysis of Juniper (2006)
explained the strong destabilizing effect of confinement around h = 1 in terms of the
interaction between modes with zero group velocity in the inner flow and outer flows.
The jet/wake flow is particularly unstable when these modes, which correspond to
saddle points in the wavenumber plane, have similar cross-stream wavenumbers. For
the sinuous motion of uniform density planar wakes, this occurs around h = 1, which
would explain the strong cross-stream force fluctuations and well-defined spectral
peaks in the studies reported in the previous paragraph. Although this paper is
concerned with planar jets and wakes, it is worth mentioning that the same effect is
found in round jets and wakes (Juniper 2008). It is particularly strong for the m =1
helical mode of confined dense wakes around h = 0.8. This is exploited in the design
of fuel injectors in rocket engines, for example in the Space Shuttle Main Engine and
in the Vulcan engine of Ariane V, in order to generate good mixing in the combustion
chamber (Juniper & Candel 2003).

For viscous planar jets and wakes, the relative influence of viscosity is determined
by the Reynolds number, which is defined with reference either to the width of the
jet/wake or to the width of the duct. These two definitions are related by a factor
h. As h is varied, only one Reynolds number can be kept constant, and this choice
dictates whether confinement seems to have a stabilizing or a destabilizing effect. A
good illustration of this is given by studies of the critical Reynolds number for the
onset of oscillations in the wake behind a confined circular cylinder. If the Reynolds
number is defined by the width of the object, as in the experimental study of Shair
et al. (1963), then the critical Reynolds number increases as the flow becomes more
confined and hence confinement seems to stabilize the flow. If, however, the Reynolds
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number is defined by the width of the duct, as in the numerical study of Chen,
Pritchard & Tavener (1995), then the critical Reynolds number decreases as the flow
becomes more confined and hence confinement seems to destabilize the flow. Another
example is found in the numerical results of Davis, Moore & Purtell (1983) for the
fluctuating lift coefficient on a square cylinder in a duct. If the Reynolds number is
based on the width of the square then, at given Reynolds number, the r.m.s. cross-
stream fluctuations decrease as the flow becomes more confined, hence confinement
seems to stabilize the flow. If, however, the results are re-scaled so that the Reynolds
number is based on the width of the duct then, at given Reynolds number, the
r.m.s. cross-stream fluctuations increase as the flow becomes more confined, hence
confinement seems to destabilize the flow. Similar results can be found in Turki,
Abbasi & Nasrallah (2003) for a confined square cylinder and De & Dalal (2007)
for a confined triangular cylinder. Above a Reynolds number of Re ≈ 750, Davis
et al. (1983) found that confinement is destabilizing, regardless of how the Reynolds
number is defined, indicating that viscous effects are no longer influential.

The viscosity is uniform in this study, which rules out the two instability mechanisms
found by Yih (1967) at long wavelength and Hooper & Boyd (1983) at short
wavelength and which are described further by Hinch (1984). Nevertheless, it is
interesting to note that Yih’s flow, in which two fluids of differing viscosities were
confined between flat plates, is most unstable when both fluids have the same width,
corresponding to h = 1. This suggests that confinement makes a flow more unstable
whether the driving mechanism is due to viscosity stratification or due to inertia.

As well as affecting the linear stability of a given base flow, confinement also
affects the nonlinear development of such flows. Although this paper is restricted to
the linear regime, it is worth mentioning two examples of nonlinear effects. In their
numerical study of the flow behind a confined square cylinder at 100 <Re < 1850,
Davis et al. (1983) found that vortices appeared along the confining walls as well as
in a street behind the cylinder. For the same configuration, but at lower Reynolds
number, Camarri & Giannetti (2007) did not find these wall vortices but did find
that the von Kármán vortices swapped sides some way down the channel. By varying
the inlet velocity profile in their numerical simulations, they were able to show that
this is due to the vorticity contained within the inlet Poiseuille profile, rather than an
effect of confinement by itself. In this paper, all vorticity is contained within the shear
layers of the jet/wake flows in order to avoid boundary layer effects.

The first aim of this paper is to catalogue the effect of confinement on the local
instability properties of simple viscous jets and wakes and to compare these with
previous studies on inviscid jets and wakes. Qualitatively, the flows that are studied
here share the same simple velocity profile. Quantitatively, they are characterized by
the confinement, shear, shear-layer thickness and Reynolds number. When combined
with the previous papers, this provides a sound physical understanding of the effect of
confinement on the local stability properties of jets and wakes. While this paper relates
to local stability, the experimental results described earlier relate to global instability.
For a thorough comparison with these experimental results, a global stability analysis
will be required on a spatially evolving base flow. The second aim of this paper is to
examine the effect of the Reynolds number on confined flows to determine the valid
range of inviscid models. The third aim of this paper is to examine the influence of
the shear-layer profile to determine whether a piecewise linear profile can capture the
instability behaviour or whether the exact profile is required.

In § 2, the model is presented, the governing equations are derived and a choice of
mean velocity is explained. In § 3, the local spatio-temporal analysis used throughout
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this paper is introduced and the procedure for locating absolutely unstable regions
is described. In § 4, the effect of varying shear-layer thickness on regions of absolute
instability is investigated as a function of shear and confinement. In § 5, viscosity is
introduced and a similar investigation is carried out looking at the effect of varying
the Reynolds number on regions of absolute instability also as a function of shear
and confinement. In § 6, the effect of confinement on viscous flows is evaluated and a
threshold above which viscosity can be ignored is established.

2. Theoretical framework
In this section, the governing equations of the perturbed base flow are derived in

the manner of Drazin & Reid (1981). The numerical method for solving this system
of equations is outlined and a versatile base flow function is constructed in order to
cover the full range of parameter space under investigation.

2.1. Derivation of the governing equations

The model consists of a two-dimensional base flow in a confined channel, given by
U∗ = (U ∗(x∗, z∗), 0, W ∗(x∗, z∗)), where the asterisk denotes dimensional quantities. The
channel has infinite extent in the x-direction and confining walls in the z-direction at
z∗ = ± (h1 + h2). The fluid has uniform density ρ, viscosity µ, and is assumed to be
incompressible. No body forces are considered and so gravitational effects are ignored.
A parallel flow assumption is made so that the base flow satisfies the conditions

U ∗(x∗, z∗) � W ∗(x∗, z∗) and
∂U ∗

∂x∗ � Umax

L
, (2.1)

where Umax = max(U1, U2) and L =h1 + h2. For the purpose of this study, the base
flow is assumed to be U∗ = (U ∗(z∗), 0, 0), where U ∗ takes extremal values U1 at the
centreline, z∗ = 0, and U2 at both the walls, z∗ = ± (h1 + h2). The average velocity
(U1 + U2)/2 is achieved at z = ± h1, which marks the boundaries between the inner
and outer sections of the flow. Its location is varied in order to change the relative
widths of the inner and outer flows and therefore the confinement.

It is convenient at this point to work in a non-dimensional framework.
This introduces the following reference scales: velocity, Uref =(U1 + U2)/2, length
Lref = h1 + h2 and density ρref = ρ. The dimensionless parameters that characterize
the flow are defined: the relative velocity difference, Λ ≡ (U1 − U2)/(U1 + U2);
the confinement, given by the relative difference in thickness of the inner and
outer streams, h ≡ (h2 − h1)/(h2 + h1) and the Reynold’s number, Re ≡ Uref Lref /ν.
The flow properties are then non-dimensionalized (unstarred) in the following
manner: t = t∗Uref /Lref , x = x∗/Lref , U = U∗/Uref and P = P ∗/ρref U

2
ref . The cross-

stream domain becomes normalized to z ∈[−1 1] with the inner–outer flow boundaries
occurring at z = ± (1 − h)/2.

The flow is governed by the Navier–Stokes equation along with the incompressibility
condition: (

∂U
∂t

+ U · ∇U
)

= −∇P +
1

Re
∇2U, (2.2)

∇ · U = 0. (2.3)

The equations of motion are linearized about this base flow and a normal-mode
decomposition is assumed of the form

û = (ũ(z), ṽ(z), w̃(z))ei(kxx+kyy−ωt) and p̂ = p̃(z)ei(kxx+kyy−ωt). (2.4)
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The perturbed three-dimensional system is governed by the equations{
1

Re

(
d2

dz2
− k2

x − k2
y

)
− i(U − c)

}
ũ = ikxp̃ +

dU

dz
w̃, (2.5){

1

Re

(
d2

dz2
− k2

x − k2
y

)
− i(U − c)

}
ṽ = ikyp̃, (2.6){

1

Re

(
d2

dz2
− k2

x − k2
y

)
− i(U − c)

}
w̃ = i

dp̃

dz
, (2.7)

ikxũ + ikyṽ +
dw̃

dz
= 0, (2.8)

along with the boundary conditions

ũ = ṽ = w̃ = 0 at z = ±1. (2.9)

Making use of Squire’s theorem, it is sufficient to consider two-dimensional
perturbations in order to obtain the strongest instability in the long time limit.
This can be seen by using the set of transformations

k =
(
k2

x + k2
y

)1/2
, c = c̃, ku = kxũ + kyṽ, w = w̃ and p/k = p̃/kx. (2.10)

This transformation is equivalent to considering the two-dimensional perturbation

û = (u(z), 0, w(z))ei(kx−ωt) and p̂ = p(z)ei(kx−ωt). (2.11)

The three-dimensional system reduces to a two-dimensional system governed by the
equations {

1

Re

d2

dz2
− k2 − i(U − c)

}
u = ikp +

dU

dz
w, (2.12){

1

Re

d2

dz2
− k2 − i(U − c)

}
w = i

dp

dz
, (2.13)

iku +
dw

dz
= 0, (2.14)

along with the boundary conditions

u = w = 0 at z = ±1. (2.15)

These boundary conditions are appropriate for this situation, in which the walls
move at the same velocity as the outer fluid, so that the combined base flow plus
the perturbation obeys the no-slip boundary condition. Because the perturbation
is two-dimensional it can be further expressed in terms of a streamfunction,
ψ(x, z, t) =ϕ(z) exp(i(kx − ωt)), hence u =dϕ/dz and w = −ikϕ. Substituting these
expressions into the above equations and eliminating in favour of ϕ, so as to give a
single ordinary differential equation (ODE), yields the Orr–Sommerfeld equation

(U − c)

(
d2

dz2
− k2

)
ϕ − d2U

dz2
ϕ +

i

kRe

(
d4

dz4
− 2k2 d2

dz2
+ k4

)
ϕ = 0, (2.16)

along with the boundary conditions

kϕ =
dϕ

dz
= 0 at z = ±1. (2.17)



Confined viscous planar jets and wakes 315

2.2. Numerical method

The resulting equation is solved using a pseudospectral Chebyshev collocation method,
the details of which can be found in Appendix A. Under this numerical discretization,
the differential operators become differentiation matrices and the base flow quantities
are discretized by their values at the collocation points, zi:

dm

dzm
→ D

(m)
ij ≡ D(m), U (z) → U (zi)δij ≡ U,

d2U

dz2
(z) → U ′′(zi)δij ≡ U′′. (2.18)

Following the boundary conditions (2.17), both the Dirichlet, ϕ = 0, and Von
Neumann, dϕ/dz =0, boundary conditions are built into the basis functions used
to construct the differentiation matrices and so are automatically satisfied by the
eigenfunction, ϕ(z); see Appendix B.

Implementing this numerical scheme, the Orr–Sommerfeld equation can be
rearranged into the form of a generalized eigenvalue problem

Aϕ = ωBϕ, (2.19)

aimed at solving for the wave frequency, ω, given the wavenumber k. This eigenvalue
pairing, (k, ω), represents the dispersion relation for the flow. The matrices Aij and
Bij are given by

A = kU(D(2) − k2I) − kU′′ +
i

Re
(D(4) − 2k2D(2) + k4I), (2.20)

B = D(2) − k2I. (2.21)

This can be solved using MATLAB’s generalized eigenvalue problem solver eig.

2.3. Saddle points

This study is interested in the stability properties in the long time limit, which
are dominated by modes with zero group velocity. These correspond to eigenvalue
pairings, (k, ω), which also satisfy the further property that ∂ω/∂k =0. These are
saddle points, denoted by the superscripts (ks, ωs). Saddle points can be located using
an explicit form for ∂ω/∂k. This is obtained using a differential form of the generalized
eigenvalue problem when expressed as

det(A − ωB) = 0. (2.22)

This is given by

∂ω

∂k
=

tr

(
adj(A − ωB)

(
∂A

∂k
− ω

∂B

∂k

))
tr(adj (A − ωB)B)

, (2.23)

where tr indicates the trace of the matrix and adj indicates the adjugate of the matrix.
The partial derivatives in (2.23) are easily calculated from (2.20) and (2.21) and are

given by

∂A

∂k
= U

(
D(2) − 3k2I

)
− U′′ − i

Re

(
4kD(2) − 4k3I

)
, (2.24)

∂B

∂k
= −2kI. (2.25)

Using the eigenvalues, ω, obtained by solving (2.19), saddle points are located by
iterating (2.23) to zero using Matlab’s Newton–Raphson method fsolve.
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2.4. Complexity and conditioning of the numerical method

A single iteration, which involves solving the eigenvalue problem in (2.19) as well as
evaluating ∂ω/∂k in (2.23), has a complexity of O(N3). Because such a large number of
iterations are required to iterate ∂ω/∂k to zero as the saddle point is tracked over the
full extent of the (1/Λ, h)-plane of interest, the cost of each iteration must be kept as
low as possible. A pseudospectral scheme is used because it requires few points, while
retaining spectral accuracy. Consolidation of the equations of motion into a single
fourth-order equation reduces the matrices Aij and Bij into smaller denser matrices
as a result of the dense Chebyshev differentiation matrices, which would otherwise be
larger and sparser when using primitive variables. A further factor of eight saving is
made by restricting the Chebyshev basis to symmetric and antisymmetric functions
so that the varicose and sinuous motions are considered separately. A symmetric
basis for the streamfunction, ϕ, corresponds to a sinuous perturbation whereas an
antisymmetric basis corresponds to a varicose perturbation. The procedure used to
derive these restricted basis differentiation matrices is presented in Appendix B.

The disadvantage of using a fourth-order equation in conjunction with a
pseudospectral scheme is that the condition number, a measure of a problem’s
amenability to digital computation, of the mth-order Chebyshev differentiation matrix
scales as O(N2m). A problem with a low condition number is said to be numerically
well-conditioned, while a problem with a high condition number is said to be
numerically ill-conditioned. For the fourth-order problem, the condition number
scales as O(N8) whereas if primitive variables had been used, where the highest
derivative is second-order, this would only be O(N4). The condition number can be
significantly improved though by applying a preconditioning matrix to the generalized
eigenvalue problem. The matrix

Πjj =
(
1 − z2

j

)2
(2.26)

used by Huang & Sloan (1994) was shown by them to be particularly effective in
conditioning fourth-order problems, reducing the condition number to only O(N4).
As a result the eigenvalue problem actually solved is given by

ΠAϕ = ωΠBϕ. (2.27)

Because the matrix Πij is diagonal, the cost of preconditioning the generalized
eigenvalue problem prior to solving it is an insignificant O(N2) operation.

2.5. The base flow

This study concerns a large range of co-flow and counter-flow jets and wakes, with
varying confinement, so the base flow must be sufficiently versatile to capture the full
range.

Since restricted bases are used, it is necessary to solve the generalized eigenvalue
problem only on the half domain z ∈ [0, 1]. As a result, the base flow needs to be
defined only on this half domain and continued into the domain z ∈ [−1, 0] by
symmetry, taking care to match the profiles at z = 0. A similar functional form is
chosen to that of the unconfined profile used by Meliga, Sipp & Chomaz (2008)
with the necessary alteration to make it suitable for the confined flows studied in this
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paper. It is given by

U (z) = 1 − Λ + 2Λ/F (z), (2.28)

F (z) = 1 +

(
β ((1/η−1)/(1/z−1))2 − 1

β − 1

)α

, (2.29)

where η ≡ (1 − h)/2. The squared power present in the exponent is necessary for
U ′′(z) to be continuous across z =0. The base flow satisfies the following boundary
conditions:

F (1) = ∞, U (1) = 1 − Λ, (2.30)

F (η) = 2, U (η) = 1, (2.31)

F (0) = 1, U (0) = 1 + Λ. (2.32)

The range of possible flows is controlled by the three parameters, (α, β, η), which
determine the location and thickness of the shear layer. The shear layer is centred
about point z = η and so is controlled by the confinement parameter h. The thickness
of the shear layer can be approximated using the inverse of the velocity gradient of
the profile at z = η. An asymptotic expression is given by

δ ∼ 1

2

β − 1

β lnβ

(1 − h2)

α
. (2.33)

The range of possible shear-layer thicknesses is maximized when β ↓ 1; however, for
the purpose of computations the value β =1 + 10−6 is used. The thickness is then
given by δ ∼ (1/2)(1 − h2)/α. The parameter α is then used to scale the shear-layer
thickness globally; see figure 2.

The symmetries present in the base flow, (U (z), Λ, h) ↔ (U (1−z), −Λ, −h), as well
as in the shear-layer thickness h ↔ −h are a conscious decision in anticipation of the
symmetries in the absolute unstable regions calculated by Juniper (2006). Note that
h = 0 in this study corresponds to a value of h = 1 in that study.

3. Spatio-temporal analysis
This section contains an outline of the procedure used to calculate transition

boundaries between absolute and convective instabilities, corresponding to the linear
spatio-temporal analysis. These transitions boundaries are calculated in the parameter
space (1/Λ, h) for various velocity profiles characterized by α and Reynolds number,
Re.

The computations carried out use typically 50–200 collocation points. Solving
the generalized eigenvalue problem in (2.19) generates a spectrum of eigenvalues, one
arising for every collocation point used. Some of these eigenvalues will have converged
to their true values, whereas a large proportion of the remaining eigenvalues will be
spurious and require additional resolution to converge. This raises the question of
which eigenvalue should be followed in order to determine the absolute–convective
instability properties. It is not possible simply to consider the eigenvalue with the
largest growth rate ωi at each wavenumber value k because the primary interest is
in tracking saddle points. A saddle point at wavenumber, k, for one eigenvalue need
not be a saddle point at the same wavenumber for another eigenvalue. A temporal
stability analysis is conducted to show which eigenvalues are important.
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Figure 2. Jet profiles U (z) plotted as a function of confinement, h, and the profile parameter
α = 1, 2, 4 and ∞.

3.1. Temporal analysis

Figure 3 shows a temporal stability analysis of sinuous perturbations for various
models, plotting the growth rate ωi against the real wavenumber k for parameters
(1/Λ, h) = (−1, 0). The first viscous eigenvalue, calculated at Re= 1000, shows close
agreement with the inviscid smooth profile for positive growth rates. The inviscid
smooth profile shares qualitative similarities with the piecewise linear profile of the
same shear-layer thickness. It has the same maximum growth rate although its growth
rate extends to larger values of k, which suggest that its shear layer is in fact thinner
than the value calculated by the asymptotics. The inviscid plug flow profile’s growth
rate is unbounded since it does not possess a stabilizing mechanism but shares close
agreement with the inviscid piecewise linear profile as k approaches zero. The other
viscous eigenvalues, in contrast, exhibit very different behaviour from all the other
profiles.

The close agreement of the first eigenvalue of the viscous model with that of
the other models motivates further investigation using asymptotics that are possible
in the small wavenumber range. Drazin & Reid (1981) showed that the asymptotic
dispersion relation for a momentum jet (Bickley 1937), which has a smooth unconfined
sech2 z velocity profile, is the same as the unbounded plug flow jet in the long-wave
limit.

3.2. Asymptotics for long waves, k ∼ 0

Small wavenumbers, k, correspond to long waves. This range of wavenumbers does
not hold much physical significance outside the scope of infinite-extent flows since
it invalidates any parallel flow assumption. In this limit, dispersion relations for
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Figure 3. Plots of growth rate ωi against real wavenumber k for sinuous perturbations at
(Λ,h) = (−1, 0) for (a) the inviscid plug flow profile (circles), (b) the inviscid piecewise linear
profile (solid squares), (c) the inviscid smooth profile (dashed) with α = 1 and (d ) the first five
eigenvalues of the viscous smooth profile (solid) for Re= 1000 with α = 1, labelled 1–5.

each eigenvalue can be derived and comparisons made with the analytic dispersion
relations obtained for the infinite-extent plug flow (Juniper 2006) and piecewise
linear flow (Juniper 2007) in the same limit in order to determine those eigenvalues
responsible for the inviscid instability.

Provided that the wavenumber satisfies |k| � Re−1, an asymptotic series can be
well posed in the small variable k given by

ϕ = ϕ0 + kϕ1 + k2ϕ2 + . . . , (3.1)

ω = ω0 + kω1 + k2ω2 + . . . . (3.2)

Substituting these series in the Orr–Sommerfeld equation in (2.16) and equating terms
at O(1) yields the leading-order differential equations

O(1) :
i

Re

(
d4

dz4
+ iω0Re

d2

dz2

)
ϕ0 = 0, (3.3)

subject to the boundary conditions

kϕ0 =
dϕ0

dz
= 0 at z = ±1. (3.4)

Assuming that ω0 �= 0, the varicose and sinuous solutions are respectively given by

varicose: ϕ0 = a0 sin γ z + b0z, (3.5)

sinuous: ϕ0 = c0 cos γ z + d0, (3.6)

where γ =(iω0Re)1/2. Satisfying the boundary conditions yields the following solubility
criterion in both cases. The varicose solubility criterion is given by

tan γ = γ, (3.7)
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which has non-zero solutions γ ≈ (n+(1/2))π, for n=1, 2, . . . . The sinuous solubility
criterion is given by

sin γ = 0, (3.8)

which has exact non-zero solutions γ = nπ, for n= 1, 2, . . . . Rearranging for ω0 gives

ω0 ∼

⎧⎪⎪⎨
⎪⎪⎩

varicose: − i(n + (1/2))2π2

Re

sinuous: − in2π2

Re

n = 1, 2, . . . . (3.9)

This eigenvalue spectrum describes a diverging alternating series of varicose and
sinuous eigenvalues down the imaginary axis of the ω-plane. This is in excellent
agreement with observed eigenvalue spectra around k = 0 in figure 3, which shows
the sinuous case.

At the next order, O(k), the governing equation is given by

O(k) :
i

Re

(
d4

dz4
+ iω0Re

d2

dz2

)
ϕ1 =

(
U ′′ − (U − ω1)

d2

dz2

)
ϕ0. (3.10)

The eigenfunction ϕ1 satisfies the same homogeneous equation as ϕ0. This will produce
secular terms if the right-hand side shares the same form as the homogeneous solution,
which require a solubility criterion to remove any secular term and hence determine ω1.

Attention is now focused on the first eigenvalue for sinuous perturbations of the
viscous smooth profile, described by (iω0Re)1/2 = π. Satisfying the boundary conditions
(3.4) gives the solution to ϕ0 as follows:

ϕ0 = c0(cos πz + 1). (3.11)

The solution ϕ0 will produce secular terms if the right-hand side possesses cos πz

Fourier components. Since the differential operator on the left-hand side of (3.10) is
self-adjoint, multiplying by ϕ0 from the left and integrating over the domain produces
the solubility criterion: ∫ 1

−1

ϕ0

(
U ′′ − (U − ω1)

d2

dz2

)
ϕ0 dz = 0. (3.12)

Substituting for ϕ0 and rearranging for ω1 gives

ω1 =
1

π2

∫ 1

−1

(cos πz + 1)(U ′′(cos πz + 1) + π2U cos πz) dz. (3.13)

For this base flow, the integral has to be evaluated numerically, here with quadrature
integration. Since the integral is real, the corresponding value of ω1 will also be real. In
order to make comparisons between the various dispersion relations in this temporal
analysis using real wavenumber k, it is necessary to consider the real component of
the wave frequency ωr .

Figure 4 shows the same temporal analysis as in figure 3 plotting the real wave
frequency ωr against the real wavenumber k for parameters (1/Λ, h) = (−1, 0). The
range of k in this figure is chosen so that the previously derived asymptotics remain
valid for the value of Re = 1000 used. The asymptotics for the first viscous eigenvalue
(1) are obtained by evaluating the integral (3.13) to give a value of ω1 = 2.0663.
This is in excellent agreement with the first viscous eigenvalue which itself is in close
agreement with both the plug flow and piecewise linear profiles, whose asymptotic
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Figure 4. Plot of ωr against k for sinuous perturbations at (Λ,h) = (−1, 0) for (a) the inviscid
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smooth profile (dashed) with α = 1, and (d ) the first five eigenvalues of the viscous smooth
profile (solid) for Re =1000 with α = 1, labelled 1–5. Asymptotics for the first eigenvalue of
the viscous smooth profile are also plotted (triangles).

dispersion relation is given exactly by ω1 = 2. The other viscous eigenvalues (2–5)
exhibit distinctly different values of ω1 from these profiles. The inviscid smooth
profile does not have a viscous term to balance it at O(k) and so yields a solution
ω1 = 0 as seen.

In summary, at very small wavenumbers, k � O(1/Re), the first eigenvalue of the
viscous model agrees well with those of the plug flow and piecewise linear models,
as seen in figure 4. At moderate wavenumbers, k ∼ O(1), the first eigenvalue of the
viscous model also agrees well with that of the inviscid model with smooth velocity
profiles, as seen in figure 3. Figures 3 and 4 show only sinuous perturbations but
the same close agreement is seen for varicose perturbations. This demonstrates that
the eigenvalue that is highest at k = 0 is the one that needs to be considered for the
analysis in this paper. As a further indication that this is the correct eigenvalue to
follow, this eigenvalue is the only one to exhibit a hump in the plot of ωi(k). This
hump is the projection of a k+ branch reaching through the kr -axis and pinching at
a saddle point with a k− branch. This saddle point determines the behaviour in the
long time limit.

3.3. Locating and tracking saddle points

Valid saddle points, which lie on the integration path, are formed through the pinching
of a k+ branch with a k− branch (a pinch point). Invalid saddle points, which do not
lie on the integration path, are formed through the pinching of a k− branch with a k−

branch. The dominant saddle point is the valid saddle point with the highest value of
ωi . Pinch points can easily be identified from contours of ωi in the complex k-plane
and assessed as either dominant or sub-dominant. Figure 5 shows such contour plots
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Figure 5. Contours of ωi in the complex k-plane. Plots correspond to varicose perturbations
of (a) inviscid plug flow, (b) inviscid finite-thickness shear layer (δ = 0.08), (c) inviscid smooth
velocity profile (α =4), and (d ) viscous smooth velocity profile (α = 4,Re =1000) calculated at
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rates. The dashed line shows the integration contour deformed in order to take the path of
steepest descent in each case.
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for several different velocity profiles: (a) inviscid flow with a discontinuous velocity
profile (plug flow), (b) inviscid flow with a piecewise linear velocity profile, (c) inviscid
flow with a smooth velocity profile, and (d ) viscous flow with a smooth velocity
profile.

For the inviscid plug flow (figure 5a) a cascade of the saddle points, s2a, s2b, . . . ,

called jet/wake column saddle points, appear near the ki-axis. The integration path
loops over an infinite number of these saddle points but, without a stabilizing
mechanism, cannot return to the kr -axis. When a finite-thickness shear layer, or any
other stabilizing mechanism, is introduced (figure 5b) a new saddle point, s1, appears
away from the ki-axis. Its position depends on the size of the shear-layer thickness. The
integration path now loops over a finite number of the jet/wake column saddle points
before passing out over this shear-layer saddle point. When a smooth velocity profile
is considered (figure 5c) the behaviour of the integration path remains qualitatively
the same, in which the path returns to the kr -axis at negative values of ωi . The ωi-
contours are different because of the inclusion of curvature and discrepancies in the
comparative sizes of the shear layers. When viscosity is introduced into this model, the
behaviour of the integration path also remains the same but the zero-contour shifts
upwards, indicating that the growth rate has decreased everywhere. For instance, the
s2a saddle point has a positive growth rate in figure 5(c), which is inviscid, but a
negative growth rate in figure 5(d ), which is viscous.

The analytic dispersion relations for inviscid plug flows and finite-thickness shear-
layer profiles produce two solutions for ω. The correct solution can easily be selected
at every point in the complex k-plane. For the smooth velocity profiles, both inviscid
and viscous solutions are obtained numerically and there are as many solutions for
ω as there are collocation points. This makes it difficult to select the correct solution
at every point in the complex k-plane.

For the inviscid problem, solutions are complex conjugates pairs and often the
solution with the highest ωi provides the correct solution over a sufficiently large
region of the k-plane. For the viscous problem, the structure of the solutions is
different and around k = 0 the solutions are very close together (O(Re−1) apart),
making it difficult to follow any particular solution. At high Re and away from k = 0,
the inviscid solution provides a suitable starting point for the location of the desired
viscous solution. At low Re, solutions are sufficiently far apart that the solution with
the highest ωi at k = 0 can be tracked to every point in the k-plane by taking steps of
size O(Re−1).

Using these contour plots, the location of a saddle point can be estimated and then
accurately determined by solving (2.27) whilst simultaneously searching for a zero of
(2.23). The parameter Λ is then varied, whilst keeping track of the saddle, until the
growth rate becomes zero, i.e. ωs

i = 0. Rather than vary h, Λ is varied because the
absolute–convective transition boundary is guaranteed to be intercepted.

The absolute–convective transition boundary in the (Λ, h)-space is the curve
along which the growth rate of the saddle remains zero and can be represented
parametrically by

ωs
i (Λ(τ ), h(τ )) = 0, (3.14)

where τ is the parametric variable. Note that ωs
i no longer depends on k since it is

constrained to be a saddle point given by ∂ωs/∂k = 0 for all t . Using this parametric
form, saddle points can be followed whilst keeping their growth rate zero in order
to produce absolute–convective transition boundaries. Further details of this method
are given in Appendix C.
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4. The effect of shear-layer thickness
In this section, the effect of shear-layer thickness on the absolute instability is

determined in the (1/Λ, h)-space. Inviscid flow is considered so that comparisons can
be made with the inviscid plug flow and piecewise linear calculations in Juniper (2006)
and Juniper (2007). When Re= ∞, the Orr–Sommerfeld equation (2.16) becomes the
Rayleigh equation

(U − c)

(
d2

dz2
− k2

)
ϕ − d2U

dz2
ϕ = 0, (4.1)

subject only to the no-flux boundary conditions

kϕ = 0 at z = ±1. (4.2)

Figure 6 shows regions of absolute instability in the (1/Λ, h)-space for varicose and
sinuous perturbations. Plots are calculated for four different shear-layer thicknesses,
characterized by the profile parameter α.

The case with α → ∞ is shown in figure 6(a). This corresponds to a jet/wake flow
with infinitely thin piecewise linear shear layers, as studied by Juniper (2007). The
absolute–convective transition boundaries at 1/Λ = ±1 arise from contributions from
the infinitely thin shear-layer mode. The other lines, at which ωs

i is also equal to zero,
arise from contributions from the jet/wake column modes. For varicose perturbations,
the absolutely unstable regions exhibit the symmetry (Λ, h) ↔ (−Λ, −h), and the
shear-layer mode dominates the instability causing all counter-flow to be absolutely
unstable. For sinuous perturbations, the absolutely unstable regions exhibit the
symmetry (Λ, h) ↔ (Λ, −h) and, although the shear-layer mode largely dominates
in the same way as for varicose perturbations, the principal jet/wake column mode
dominates for wakes at confinement around h ≈ 0 and gives rise to a large region of
absolute instability that extends far into the co-flow domain.

For α = 1, corresponding to the velocity profile with the thickest shear layer, the
shear-layer saddle lies close to the origin. It and the principal jet/wake column
mode saddle are the only saddles that lie on the integration contour. For varicose
perturbations, the shear-layer saddle is always the dominant saddle, although the sub-
dominant jet/wake column mode saddle influences the region of absolute instability
that it produces. This influence can be seen in weakly confined wakes and strongly
confined jets, for which the absolutely unstable region follows the line where the
principal jet/wake column mode at α → ∞ has zero growth rate (the nearly straight
diagonal lines in figure 6a). For sinuous perturbations, the principal jet/wake column
mode contributes directly to the absolutely unstable region, producing a hump at h ∼ 0
that extends into the co-flow wake domain, similar to that found in the α → ∞ case.
At strong confinement, the absolutely unstable regions due to the shear-layer mode
are similar to those of the varicose perturbations because, at strong confinement, the
shear layer is most strongly influenced by its image in the wall. At weak confinement,
the sinuous behaviour is very different from the varicose behaviour and, for wakes,
the absolutely unstable region extends into the co-flow region, suggesting that a
finite thickness shear layer is more unstable than an infinitely thin shear layer. This
observation agrees with results in figure 6 of Lesshaft & Huerre (2007).

As the shear-layer thickness decreases (increasing α), the shear-layer saddle moves
away from the ki-axis. This allows the integration path to pass over additional jet/wake
column mode saddles before passing out over the shear-layer saddle. The thinning
of the shear layers significantly enhances absolute instability, causing the absolutely
unstable regions to extend to lower values of shear. For varicose perturbations, this
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occurs for strongly confined wakes as well as weakly confined jets because of the
varicose symmetry (Λ, h) ↔ (−Λ, −h).

When α = 4, the absolutely unstable regions for both varicose and sinuous
perturbations bear a close resemblance to their counterparts when α → ∞. The
absolute–convective transition boundaries from the shear-layer mode approach the
values 1/Λ = ± 1, which they take in the limit α → ∞. For weakly confined sinuous
wakes, the absolutely unstable regions continue to extend significantly into the co-
flow domain. In addition, prominent features arising from the jet/wake modes can
be identified. For varicose perturbations, the asymmetric humps (around h ≈ −0.4
for wakes and h ≈ 0.4 for jets) extend into the co-flow domain, demonstrating that
a finite thickness shear layer promotes instability. For sinuous perturbations, the
large wake-side hump has the approximate symmetry (Λ, h) ↔ (Λ, −h) and, like the
varicose case, extends marginally further outwards.

5. The effect of viscosity
In this section, the effect of viscosity on absolute instability is determined. Regions

of absolute instability are calculated in the (1/Λ, h)-space for different values of
the Reynolds number between 10 and 1000. The α = 4 velocity profile is considered
throughout this section because, with this thinner shear layer, both jet/wake column
modes and the shear-layer modes can be identified.

Figures 7 and 8 show regions of absolute instability in the (1/Λ, h)-space of this
viscous flow for varicose and sinuous perturbations respectively. Plots are calculated
at six different values of the Reynolds numbers, Re = ∞, 103, 102.5, 102, 101.5 and 101.

The Re = ∞ plots correspond to the inviscid calculations in the previous section.
The asymptotics in § 3.2 showed that, when viscosity is introduced, the growth rate,
ωi , becomes negative near the origin. These values differ from the inviscid value
of ωi =0 by O(Re−1). The temporal analysis in figure 3 shows that, away from the
origin, the behaviour follows that of the inviscid curve, although at lower values of ωi .
Therefore, the inviscid curve provides an upper bound on the viscous behaviour away
from the origin. The overall effect throughout the complex k-space seen in figure 5(d )
(viscous) when compared with figure 5(c) (inviscid) is that contours of ωi are lowered
everywhere.

When viscosity is introduced, a new saddle appears close to the origin, for sinuous
perturbations. This saddle produces a large region of absolute instability on the jet
side, which is shaded light grey in figure 8. The relevance and behaviour of this saddle
is discussed in § 5.1.

With weak viscosity, corresponding to Re =1000, the regions of absolute instability
(shaded dark grey) for both varicose and sinuous perturbations are only slightly
different from those of the inviscid flow. At higher Reynolds numbers this difference
is even less, as can be seen in figure 9, which shows the growth rate of a saddle as a
function of Reynolds numbers for different shear-layer thicknesses. Above Re= 1000,
the behaviour of the growth rate is approximated well by its inviscid value, whilst
below Re= 100 the behaviour is dominated by viscous effects and the growth rate
decreases rapidly. In between these two values the behaviour is a combination of the
two.

As the Reynolds number decreases from 1000 to 10, the regions of absolute
instability contract towards 1/Λ = 0, which corresponds to strong counter-flow.
Transition boundaries are most strongly affected at both strong and weak confinement
(h ∼ ±0.82). This is because the shear-layer thickness is one-third of its value at
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Figure 7. Regions of absolute instability (grey) in the (1/Λ, h)-space for viscous flow subject
to varicose perturbations. Plots are calculated for the profile parameter α = 4 over a range of
different Reynolds numbers, Re = ∞, 103, 102.5, 102, 101.5 and 101.

normal confinement (h ∼ 0), which causes the shear-layer saddle to move to larger
values of k, on which viscosity has a stronger stabilizing effect. At each Reynolds
number, the regions of absolute instability for varicose perturbations continue to obey
the symmetry (1/Λ, h) ↔ (−1/Λ, −h). Similarly, regions of absolute instability for
sinuous perturbations at strong confinement continue to match those in the varicose
case.

Optimal confinement is defined as the confinement at which absolute instability
occurs with the lowest amount of shear (largest |1/Λ|). For varicose perturbations,
this occurs around h ≈ 0.4 for jets and h ≈ −0.4 for wakes and continue to remain
around these values as the Reynolds number decreases. For sinuous perturbations,
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Figure 8. Same as figure 8 but for sinuous perturbations. Regions of absolute instability
shaded in light grey are produced by the viscous saddle described in § 5.1, which has a very
small growth rate.

this occurs around h = 0 but shifts to weaker values of confinements as the Reynolds
number is decreased.

5.1. Long-wavelength viscous saddle

For sinuous jets, a new saddle point appears. This can be seen in figure 10, which
shows plots of growth rate, ωi , in the k-plane at five different Reynolds numbers:
101, 101.5, 102, 102.5, 103. The plots indicate that the saddle point is a legitimate k+/k−

pinch point and that it goes absolutely unstable between Re = 101.5 and 102.
The region of absolute instability generated by this saddle point is shown as a

function of Reynolds number in figure 10(f ). As the Reynolds number increases, the
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Figure 9. Plots of ωi of the principal jet/wake column mode saddle at (1/Λ, h) = (−1, 0) for
sinuous perturbations as the Reynolds number is varied between 10 and 106. Growth rates are
plotted for three different velocity profiles, α = 1 (solid), 2 (dashed) and 4 (dot dashed). The
markers indicate where the value of ωi is within a tolerance of 0.1 (�), 0.01 (�) and 0.001 (�)
of its value for Re= ∞.

absolutely unstable region includes co-flow jets and becomes larger than the region
generated by the shear layer and flow mode saddles alone.

Figure 11 shows the frequency, growth rate and wavenumber of this saddle as
the Reynolds number varies. The growth rate is a maximum around Re = 103. As
the Reynolds number increases further, the growth steadily decreases and the saddle
point moves closer to k = 0. At high Reynolds numbers, both kr and ki scale with
Re−1/2 and ωi scales with Re−1. These power laws indicate that, in addition to having
a very long wavelength, the viscous mode has very small growth rates.

This saddle point does not appear in the inviscid calculations and strongly depends
on the Reynolds number, so we call this the viscous saddle point, s0. A global analysis
might reveal a corresponding viscous global mode but, with such a weak growth rate,
it could prove to be as difficult to observe as the most unstable Orr–Sommerfeld
mode in a planar Poiseuille flow just above a Reynolds number of 5772. It is curious
but seems unlikely to be influential in a global analysis.

5.2. Effect of boundary layers

As well as changing the stability of a flow through the mechanisms described by
Juniper (2007), confinement alters the base flow by introducing boundary layers. In
the global analysis of Tammisola (2009), confined wake flows with perfect slip are
considered alongside confined wake flows with no slip. Tammisola (2009) finds that
the former flows, which have no boundary layers, are destabilized by confinement
while the latter flows, which have developing boundary layers, are stabilized by
confinement. The former result agrees with those in this paper, in which boundary
layers are avoided by moving the confining walls with the fluid. The latter result raises
the question of whether an interaction between the shear layers and the boundary
layers has caused the flow to become more stable or whether this stabilizing effect
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Figure 10. Small plots (a–e) show contours of the growth rate ωi in the complex
k-space calculated for (1/Λ, h, α) = (0.5, 0, 4) at five different Reynolds numbers,
Re= 101, 101.5, 102, 102.5, 103. The position of the viscous saddle point is indicated by the
black circle and can be seen to remain a valid pinch point across all Reynolds numbers.
The ωi = 0 contour is shown as a solid line. Branch cuts are shown as dashed lines. (f ) The
large plot shows the regions of absolute instability as a function of confinement and shear
corresponding to the viscous saddle point at the different Reynolds numbers labelled on each
contour.

arises simply because the boundary layers cause the flow to relax towards Poiseuille
flow.

In order to investigate this, four of the no-slip confined cases in Tammisola (2009)
are analysed here. First, the local stability of the entire profile is calculated, containing
both the shear layers and the boundary layers. Then the boundary layers are artificially
removed and the local stability is recalculated. Both the temporal and the absolute
growth rates are calculated for each profile as shown in figure 12.

When the boundary layers are far from the shear layers, they have a negligible effect
on both growth rates. This can be seen over the approximate ranges 0<x < 6 for
h =0.6 and 0.4 and 0 <x < 0.5 for h = 0.2 and 0.0. The upstream region, 0 <x < 0.5,
clearly becomes more unstable as the flow is confined, in accordance with the results
of this paper. When the boundary layers start to impinge on the shear layers, however,
they reduce both growth rates. This can be seen clearly particularly over the range
1 <x < 3 for h =0.0. This occurs before the boundary layers have reached Poiseuille
flow, so must be due to an interaction between the shear layers and the boundary
layers.
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Figure 11. The properties ωr , kr (solid) and ωi, ki (dot-dashed) of the long-wavelength saddle
are tracked as the Reynolds number is varied between 102 and 1010 for the parameters
(1/Λ, h) = (1, 0).

6. Conclusions
In this paper, a model base flow has been used to examine the effect of shear-layer

thickness and viscosity on the absolute instability of a wide range of confined planar
jets and wakes. The primary aim of this study is to catalogue the effect of confinement
on viscous flows. The secondary aim is to examine the effect of the Reynolds number
on confined flows in order to determine the valid range of inviscid models such as
those of Juniper (2006). The tertiary aim is to examine the effect of the shear-layer
thickness in order to determine whether a piecewise linear shear layer can capture
the important points of the instability behaviour or whether the exact profile is
required. A spatio-temporal analysis was conducted to determine regions of absolute
instability in the (1/Λ, h)-space of interest. Results were obtained over a wide range
of confinements −0.82 <h< 0.82 corresponding to 0.1 <h2/h1 < 10.

First, the effect of shear-layer thickness was examined, taking the fluid to be
inviscid. For the most part, thicker shear layers stabilize the flow. A finite-thickness
shear layer can, however, enhance the absolute instability relative to the infinitely
thin shear layer for both varicose and sinuous perturbations. With a thin shear-layer
thickness (α =4) the absolutely unstable regions closely match those calculated using
a plug flow and piecewise linear profile. This can be seen by comparing figures 6(a)
and 6(c) for varicose perturbations and 6(b) and 6(d ) for sinuous perturbations. This
suggests that the simple models used in previous studies by Juniper (2006, 2007)
provide good approximations for instability properties when the shear-layer thickness
is thin, which achieves the tertiary aim of the study. The region with thin shear layers
would correspond to the region immediately downstream of where the two streams
are introduced. The local instability properties in this region have a strong influence
on the global instability.
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Figure 12. (a–d ) The local stability of base flows with and without boundary layers for
h =0.6, 0.4, 0.2 and 0.0. The velocity profiles (top) and local growth rates (bottom) are shown
as functions of downstream distance for the cases with boundary layers (black) and without
boundary layers (grey). The boundary layers are removed by replacing the velocity in the
boundary layer with the maximum velocity. The base flows are calculated at Re = 100 based
on the half-width of the wake and the maximum inlet velocity of the outer flow. This
corresponds to Re= 500, 333, 250 and 200 based on the width of the channel.

Second, the effect of viscosity was examined on the thinnest shear-layer profile
(α = 4). In the first step, the absolutely unstable region in (1/Λ, h)-space was
determined for 10 � Re � 103 and compared with that determined for the inviscid
case. It was observed that, as the Reynolds number decreases, the regions of absolute
instability shrink towards 1/Λ = 0, which corresponds to a very strong counter-flow.
The regions retain, however, their general dependence on confinement, h. In the
second step, the growth rate of the principal jet/wake column mode was determined
at (1/Λ, h) = (−1, 0) for three shear-layer thicknesses with 10 � Re � 106. It was
observed that the Reynolds number has little effect above Re= 103, which achieves
the secondary aim of the study. For the sinuous instability, a viscous mode was
discovered with a very long wavelength and a very small growth rate. Although valid
within the constraints of the model, particularly the constraint of no streamwise
evolution, it seems unlikely that this mode would be influential in an experiment or
a global stability analysis.
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The primary aim of this study is to examine the effect of confinement on viscous
flows. At each Reynolds number, an optimal value of confinement was found at
which absolute instability could occur for the least amount of shear (largest |1/Λ|).
For varicose perturbations, the optimal confinement was located around h ≈ 0.4
(h2/h1 ≈ 7/3) for jets and h ≈ −0.4 (h2/h1 ≈ −7/3) for wakes, over the majority of
the range of Reynolds numbers considered. For sinuous perturbations, the optimal
confinement was located at h ≈ 0 (h2/h1 ≈ 1) for both jets and wakes at large Reynolds
numbers (Re � 1000) but was found to prefer weaker confinement as the Reynolds
number was decreased. It is natural to examine the effect of confinement at a given
Reynolds number. When this Reynolds number is defined by the width of the channel,
this study shows that confinement has the same destabilizing effect on viscous flows
that it has on inviscid flows, until the boundary layers start to impinge on the shear
layers. This theoretical result is consistent with the experimental findings of Shair
et al. (1963), Chen et al. (1995) and Davis et al. (1983).

This paper is one of a series investigating the most influential factors affecting the
stability of jet/wake flows. The main emphasis of this paper is the effect of viscosity
and confinement. At Re = 1000, regions of absolute instability in (1/Λ, h)-space are
found to coincide closely with those for inviscid flow. It can also be inferred from the
results in this paper that this agreement will improve with increasing Re. This result
has important implications for the study of confined jet/wake flows at high Reynolds
numbers, regardless of whether Re is based on the channel width or the jet/wake
width. This is because the assumption of vanishing vorticity makes the stability
analysis much simpler and cheaper. Flows in this category include the flow within
combustion chambers in rockets and aircraft, particularly the flow just downstream
of the fuel injectors, where the Reynolds number is typically 105.

The authors would like to thank Outi Tammisola and Fredrik Lundell for providing
the velocity profiles in figure 12 and for useful discussions throughout the project.

Appendix A. Collocation method and Chebyshev basis functions
Chapters 4–6 of Boyd (2000) provide an extensive description of spectral methods

used in this paper. A Chebyshev–Gauss–Lobatto grid constructed with 2N points is
given by

zj = cos

(
π(j − 1)

2N − 1

)
, j = 1, 2, . . . , 2N. (A 1)

A cardinal basis, using Chebyshev polynomials, is defined on this grid by the functions

Cj (z) =
(1 − z2)2(
1 − z2

j

)2

T ′
N−1(z)

T ′′
N−1(zj )(z − zj )

, j = 1, 2, . . . , 2N, (A 2)

such that Cj (zi) = δij . Chebyshev polynomials, TN (z), are solutions of the equation

(1 − z2)T ′′
N − zT ′

N + N2TN = 0. (A 3)

The leading quartic term in (A 2) ensures that the Dirichlet (Cj (±1) = 0) and Von
Neumann (C ′

j (±1) = 0) boundary conditions are satisfied at both walls by every
cardinal function and so also by any combination of them. The nth differentiation
matrix is constructed as follows:

D
(n)
ij = C

(n)
j (zi), i, j = 1, 2, . . . , 2N. (A 4)
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They are produced using the program cheb4c.m, found in a MATLAB differentiation
matrix suite developed by Weideman & Reddy (2000).

Appendix B. Restriction to a symmetric or antisymmetric basis
Exploiting parity is described in chapter 8 of Boyd (2000). The full cardinal basis,

Cj (z), is defined on the domain, z ∈ [−1, 1], corresponding to j = 1, 2, . . . , 2N .
Restricting the basis to only symmetric or antisymmetric functions restricts
consideration to the half-domain, z ∈ [0, 1], corresponding to j = 1, 2, . . . , N .
Symmetric basis functions, Sj (x), and antisymmetric basis functions, Aj (x), are
constructed from the original cardinal basis, Cj (z), as follows:

Sj (z) = Cj (z) + Cj (−z), j = 1, 2, . . . , N, (B 1)

Aj (z) = Cj (z) − Cj (−z), j = 1, 2, . . . , N. (B 2)

The nth differentiation matrix for the restricted bases, D
(n)
S (symmetric) and D

(n)
A

(antisymmetric), is obtained by differentiating each basis function and evaluating it
at each point in the half-domain, zi , for i =1, 2, . . . , N:

S
(n)
j (zi) = C

(n)
j (zi) + (−1)nC(n)

j (−zi), i, j = 1, 2, . . . , N, (B 3)

A
(n)
j (zi) = C

(n)
j (zi) − (−1)nC(n)

j (−zi), i, j = 1, 2, . . . , N. (B 4)

Using the symmetry of the Chebyshev–Gauss–Lobatto grid, C
(n)
j (−zi) = C

(n)
j (zN−i) for

all n gives (
D

(n)
S

)
ij

= D
(n)
ij + (−1)nD(n)

(N−i)j , i, j = 1, 2, . . . , N, (B 5)(
D

(n)
A

)
ij

= D
(n)
ij − (−1)nD(n)

(N−i)j , i, j = 1, 2, . . . , N. (B 6)

Appendix C. Parametric saddle-point equations
In order to remain on the transition boundary, the saddle point must satisfy

dωs
i /dτ =0 given by

dΛ

dτ

(
∂ωs

i

∂Λ

)
h

+
dh

dτ

(
∂ωs

i

∂h

)
Λ

= 0. (C 1)

A further condition is required to obtain both branches of the solution, i.e. those
increasing and decreasing with h, given by dh/dτ = ±1, respectively. This system of
equations can be expressed in matrix form as⎛

⎜⎜⎝
(

∂ωs
i

∂Λ

)
h

(
∂ωs

i

∂h

)
Λ

0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

dΛ

dτ

dh

dτ

⎞
⎟⎟⎠ =

⎛
⎜⎝

0

±1

⎞
⎟⎠ , (C 2)

which can also be trivially inverted to give⎛
⎜⎜⎝

dΛ

dτ

dh

dτ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝∓

(
∂ωs

i

∂h

)
Λ

(
∂ωs

i

∂Λ

)−1

h

±1

⎞
⎟⎟⎠ . (C 3)

Along with a suitably accurate initial condition, (Λ(τ0), h(τ0)) = (Λ0, h0), this is now in
an appropriate form for solving using an ODE solver. The partial derivatives on the
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right-hand side cannot be obtained analytically and so have to be approximated by
finite difference schemes. In both cases, a simple Euler difference scheme is adopted
as follows:

dΛ

dτ
= ∓

(
∂ωs

i

∂h

)
Λ

(
∂ωs

i

∂Λ

)−1

h

= −δΛ

δh

(
ωs

i (Λ, h ± δh) − ωs
i (Λ, h)

ωs
i (Λ + δΛ, h) − ωs

i (Λ, h)

)
+ O(δΛ, δh),

(C 4)

because the quantities δΛ and δh can be taken to be arbitrarily small so as to achieve
the required accuracy.
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